Advertisement

New Insights on the Basic Science of Bladder Exstrophy-epispadias Complex

  • Saran A. Hall
    Affiliations
    Robert D. Jeffs Division of Pediatric Urology, James Buchanan Brady Urological Institutions, Johns Hopkins Hospital, Johns Hopkins Medical Institutions, Charlotte Bloomberg Children's Hospital, Baltimore, MD
    Search for articles by this author
  • Roni Manyevitch
    Affiliations
    Robert D. Jeffs Division of Pediatric Urology, James Buchanan Brady Urological Institutions, Johns Hopkins Hospital, Johns Hopkins Medical Institutions, Charlotte Bloomberg Children's Hospital, Baltimore, MD
    Search for articles by this author
  • Preeya K. Mistry
    Affiliations
    Robert D. Jeffs Division of Pediatric Urology, James Buchanan Brady Urological Institutions, Johns Hopkins Hospital, Johns Hopkins Medical Institutions, Charlotte Bloomberg Children's Hospital, Baltimore, MD
    Search for articles by this author
  • Wayland Wu
    Affiliations
    Robert D. Jeffs Division of Pediatric Urology, James Buchanan Brady Urological Institutions, Johns Hopkins Hospital, Johns Hopkins Medical Institutions, Charlotte Bloomberg Children's Hospital, Baltimore, MD
    Search for articles by this author
  • John P. Gearhart
    Correspondence
    Address correspondence to: John P. Gearhart, M.D., Division of Pediatric Urology, The Johns Hopkins University School of Medicine, James Buchanan Brady Urological Institute, Charlotte Bloomberg Children's Hospital, 1800 Orleans St, Suite 7304, Baltimore, MD 21287
    Affiliations
    Robert D. Jeffs Division of Pediatric Urology, James Buchanan Brady Urological Institutions, Johns Hopkins Hospital, Johns Hopkins Medical Institutions, Charlotte Bloomberg Children's Hospital, Baltimore, MD
    Search for articles by this author
Published:October 10, 2020DOI:https://doi.org/10.1016/j.urology.2020.10.004

      Abstract

      The exstrophy-epispadias complex is a rare congenital anomaly presenting as a wide spectrum of disorders. The complex nature of this malformation leads to continuous investigations of the basic science concepts behind it. Elucidating these concepts allows one to fully understand the mechanisms behind the disease in order to improve diagnosis, management, and treatment ultimately leading to improvement in patient quality of life. Multiple technological advancements within the last 10 years have been made allowing for new studies to be conducted. Herein, the authors conduct a literature review of studies from 2009 to 2019, considering novel theories regarding the genetics, embryology, bladder, bony pelvis, prostate, and genitalia of patients with bladder exstrophy-epispadias complex.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Urology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Tourchi A
        • Inouye BM
        • Di Carlo HN.
        • Young E
        • Ko J
        • Gearhart JP
        New advances in the pathophysiologic and radiologic basis of the exstrophy spectrum.
        J Pediatr Urol. 2014; 10: 212-218
      1. WebMaster. (2015). Epispadias: causes and incidence. Retrieved June 26, 2020, from http://heainfo.org/index.php/2015/06/06/epispadias-causes-incidence/

        • Ludwig M
        • Ching B
        • Reutter H
        • Boyadjiev SA
        Bladder exstrophy-epispadias complex.
        Birth Defects Res Part A. 2009; 85: 509-522
        • Draaken M
        • Knapp M
        • Pennimpede T
        • et al.
        Genome-wide association study and meta-analysis identify ISL1 as genome-wide significant susceptibility gene for bladder exstrophy.
        PLOS Genet. 2015; 11e1005024
        • Reutter H
        • Shapiro E
        • Gruen JR
        Seven new cases of familial isolated bladder exstrophy and epispadias complex (BEEC) and review of the literature.
        Am J Med Genet Part A. 2003; 120A: 215-221
        • Reutter H
        • Qi L
        • Gearhart JP
        • et al.
        Concordance analyses of twins with bladder exstrophy–epispadias complex suggest genetic etiology.
        Am J Med Genet Part A. 2007; 143A: 2751-2756
        • Wilkins S
        • Zhang KW
        • Mahfuz I
        • et al.
        Insertion/deletion polymorphisms in the ΔNp63 promoter are a risk factor for bladder exstrophy epispadias complex.
        PLoS Genet. 2012; 8e1003070
        • Cheng W
        • Jacobs WB
        • Zhang JJR
        • et al.
        Np63 plays an anti-apoptotic role in ventral bladder development.
        Development. 2006; 133: 4783-4792
        • Mahfuz I
        • Darling T
        • Wilkins S
        • White S
        • Cheng W
        New insights into the pathogenesis of bladder exstrophy–epispadias complex.
        J Pediatr Urol. 2013; 9: 996-1005
        • Ihrie RA
        • Marques MR
        • Nguyen BT
        • et al.
        Perp is a p63-regulated gene essential for epithelial integrity.
        Cell. 2005; 120: 843-856
        • Darling T
        • Mahfuz I
        • White SJ
        • Cheng W
        No TAP63 promoter mutation is detected in bladder exstrophy-epispadias complex patients.
        J Pediatr Surg. 2013; 48: 2393-2400
        • Draaken M
        • Baudisch F
        • Timmermann B
        • et al.
        Classic bladder exstrophy: frequent 22q11.21 duplications and definition of a 414 kb phenocritical region: 22Q11.21 duplications in bladder exstrophy.
        Birth Defects Res Part A. 2014; 100: 512-517
        • Low copy repeats
        In: Encyclopedic Reference of Genomics and Proteomics in Molecular Medicine.
        Springer, Berlin Heidelberg2006
        • Draaken M
        • Reutter H
        • Schramm C
        • et al.
        Microduplications at 22q11.21 are associated with non-syndromic classic bladder exstrophy.
        Eur J Med Genet. 2010; 53: 55-60
        • Lundin J.
        • Söderhäll C.
        • Lundén L.
        • et al.
        22q11.2 microduplication in two patients with bladder exstrophy and hearing impairment.
        Eur J Med Genet. 2010; 53: 61-65
        • Morcel K
        • Watrin T
        • Pasquier L
        • et al.
        Utero-vaginal aplasia (Mayer-Rokitansky-Küster-Hauser syndrome) associated with deletions in known DiGeorge or DiGeorge-like loci.
        Orphanet J Rare Dis. 2011; 6: 9
        • Lundin J
        • Markljung E
        • Baranowska Körberg I
        • et al.
        Further support linking the 22q11.2 microduplication to an increased risk of bladder exstrophy and highlighting LZTR1 as a candidate gene.
        Mol Genet Genom Med. 2019; : e666
        • Nacak TG
        • Leptien K
        • Fellner D
        • Augustin HG
        • Kroll J
        The BTB-kelch protein LZTR-1 is a novel golgi protein that is degraded upon induction of apoptosis.
        J Biol Chem. 2006; 281: 5065-5071
        • Zhang R
        • Knapp M
        • Suzuki K
        • et al.
        ISL1 is a major susceptibility gene for classic bladder exstrophy and a regulator of urinary tract development.
        Sci Rep. 2017; 7: 42170
        • Arkani S
        • Cao J
        • Lundin J
        • et al.
        Evaluation of the ISL1 gene in the pathogenesis of bladder exstrophy in a Swedish cohort.
        Hum Genome Var. 2018; 5: 18009
        • Draaken M
        • Knapp M
        • Pennimpede T
        • et al.
        Genome-wide association study and meta-analysis identify ISL1 as genome-wide significant susceptibility gene for bladder exstrophy.
        PLOS Genet. 2015; 11e1005024
        • Zhuang S
        • Zhang Q
        • Zhuang T
        • Evans SM
        • Liang X
        • Sun Y
        Expression of Isl1 during mouse development.
        Gene Expr Patterns. 2013; 13: 407-412
        • Ching ST
        • Infante CR
        • Du W
        • et al.
        Isl1 mediates mesenchymal expansion in the developing external genitalia via regulation of Bmp4, Fgf10 and Wnt5a.
        Hum Mol Genet. 2018; 27: 107-119
        • Wang C
        • Wang J
        • Borer JG.
        • Li X
        Embryonic origin and remodeling of the urinary and digestive outlets.
        PloS One. 2013; 8: e55587
        • Guo C
        • Sun Y
        • Guo C
        • MacDonald BT
        • Borer JG
        • Li X
        Dkk1 in the peri-cloaca mesenchyme regulates formation of anorectal and genitourinary tracts.
        Dev Biol. 2014; 385: 41-51
        • Bruch SW
        • Adzick NS
        • Goldstein RB
        • Harrison MR
        Challenging the embryogenesis of cloacal exstrophy.
        J Pediatr Surg. 1996; 31: 768-770https://doi.org/10.1016/s0022-3468(96)90128-1
        • Muecke EC
        The role of the cloacae membrane in exstrophy: the first successful experimental study.
        J Urol. 1964; 92: 659-668
        • Thomalla JV
        • Rudolph RA
        • Rink RC
        • Mitchell ME
        Induction of cloacal exstrophy in the chick embryo using the CO2 laser.
        J Urol. 1985; 134: 991-995https://doi.org/10.1016/S0022-5347(17)47573-2
        • Mildenberger H
        • Kluth D
        • Dziuba M
        Embryology of bladder exstrophy.
        J Pediatr Surg. 1988; 23: 166-170
        • Stephens FD
        • Hutson JM
        Differences in embryogenesis of epispadias, exstrophy–epispadias complex and hypospadias.
        J Pediatr Urol. 2005; 1: 283-288
        • Kulkarni B
        • Chaudhari N
        Embryogenesis of bladder exstrophy: a new hypothesis.
        J Indian Assoc Pediatr Surg. 2008; 13: 57-60
        • V KSK
        • Mammen A
        • Varma KK
        Pathogenesis of bladder exstrophy: A new hypothesis.
        J Pediatr Urol. 2015; 11: 314-318https://doi.org/10.1016/j.jpurol.2015.05.030
        • Stec AAJ
        • Wakim A
        • Barbet P
        • et al.
        Fetal bony pelvis in the bladder exstrophy complex: normal potential for growth?.
        Urology. 2003; 62: 337-341
        • Langer JC
        • Brennan B
        • Lappalainen RE
        • et al.
        Cloacal exstrophy: prenatal diagnosis before rupture of the cloacal membrane.
        J Pediatr Surg. 1992; 27: 1352-1355
        • Jayman J
        • Tourchi A
        • Shabaninia M
        • Maruf M
        • DiCarlo H
        • Gearhart JP
        The surgical management of bladder polyps in the setting of exstrophy epispadias complex.
        Urology. 2017; 109: 171-174
        • Rubenwolf PC
        • Eder F
        • Ebert A-K
        • Hofstaedter F
        • Roesch WH
        Expression and potential clinical significance of urothelial cytodifferentiation markers in the exstrophic bladder.
        J Urol. 2012; 187: 1806-1811
        • Rubenwolf PC
        • Eder F
        • Ebert A-K
        • Hofstaedter F
        • Woodhouse CRJ
        • Roesch WH
        Persistent histological changes in the exstrophic bladder after primary closure—a cause for concern?.
        J Urol. 2013; 189: 671-677
      2. Kaprenski, M, Michaud, J, Yang, Z, et al. (2020). Urothelial differences in the exstrophy-epispadias complex: potential implications for management. Unpublished manuscript.

        • Aboushwareb T
        • Zhou G
        • Deng FM
        • et al.
        Alterations in bladder function associated with urothelial defects in uroplakin II and IIIa knockout mice.
        Neurourol Urodyn. 2009; 28: 1028-1033
        • Suson KD
        • Stec AA
        • Shimoda LA
        • Gearhart JP
        Initial characterization of exstrophy bladder smooth muscle cells in culture.
        J Urol. 2012; 188: 1521-1527
        • Johal NS
        • Arthurs C
        • Cuckow P
        • et al.
        Functional, histological and molecular characteristics of human exstrophy detrusor.
        J Pediatr Urol. 2019; 15: 154.e1-154.e9https://doi.org/10.1016/j.jpurol.2018.12.004
        • Lee BR
        • Perlman EJ.
        • Partin AW
        • Jeffs RD
        • Gearhart JP
        Evaluation of smooth muscle and collagen subtypes in normal newborns and those with bladder exstrophy.
        J Urol. 1996; 156: 2034-2036
        • Shabaninia M
        • Tourchi A
        • Di Carlo H
        • Gearhart JP
        Autophagy, apoptosis, and cell proliferation in exstrophy-epispadias complex.
        Urology. 2018; 111: 157-161
        • Sponseller PD
        • Bisson LJ
        • Gearhart JP
        • Jeffs RD
        • Magid D
        • Fishman E
        The anatomy of the pelvis in the exstrophy complex.
        JBJS. 1995; 77: 177-189
        • Stec AA
        • Pannu HK
        • Tadros YE
        • et al.
        Evaluation of the bony pelvis in classic bladder exstrophy by using 3D-CT: further insights.
        Urology. 2001; 58: 1030-1035
        • Stephens L
        • Mantovani A
        • Keene DJB
        • et al.
        Shortened pubic bones in bladder exstrophy: a congenital or acquired phenomenon?.
        J Pediatr Urol. 2014; 10: 325-328
        • Yazici M
        • Sözübir S
        • Kilicoglu G
        • Bernay F
        • Incesu L
        • Ariturk E
        Three-dimensional anatomy of the pelvis in bladder exstrophy: description of bone pathology by using three-dimensional computed tomography and its clinical relevance.
        J Pediatr Orthop. 1998; 18: 132-135
        • Suson KD
        • Sponseller PD
        • Gearhart JP
        Bony abnormalities in classic bladder exstrophy: the urologist's perspective.
        J Pediatr Urol. 2013; 9: 112-122
        • Nordin S
        • Clementson C
        • Herrlin K
        • Hägglund G
        Hip configuration and function in bladder exstrophy treated without pelvic osteotomy.
        J Pediatr Orthop Part B. 1996; 5: 119-122
        • Yazici M
        • Kandemir U
        • Atilla B
        • Eryilmaz M
        Rotational profile of lower extremities in bladder exstrophy patients with unapproximated pelvis: a clinical and radiologic study in children older than 7 years.
        J Pediatr Orthop. 1999; 19: 531-535
        • Nehme A
        • Oakes D
        • Perry MJ
        • Hawatmeh SI
        • Trousdale RT
        Acetabular morphology in bladder exstrophy complex.
        Clin Orthop. 2007; 458: 125-130
      3. Manyevitch R, Dunn E, Zaman MH, et al. Volumetric and acetabular changes in the bony pelvis associated with primary closure of classic bladder exstrophy [published online ahead of print, 2020 Sep 7]. J Pediatr Urol. 2020;S1477-5131(20)30525-8. https://doi.org/10.1016/j.jpurol.2020.08.028

        • Benz Karl S
        • Emily D
        • Mahir M
        • et al.
        Novel anatomical observations of the prostate, prostatic vasculature and penile vasculature in classic bladder exstrophy using magnetic resonance imaging.
        J Urol. 2018; 200: 1354-1361
        • Silver RI
        • Yang A
        • Ben-Chaim J
        • Jeffs RD
        • Gearhart JP
        Penile length in adulthood after exstrophy reconstruction.
        J Urol. 1997; 157: 999-1003
        • Dunn EA
        • Kasprenski M
        • Facciola J
        • et al.
        Anatomy of classic bladder exstrophy: MRI findings and surgical correlation.
        Curr Urol Rep. 2019; 20: 48
        • Kureel SN
        • Gupta A
        • Singh CS
        • Kumar M
        Surgical anatomy of penis in exstrophy-epispadias: a study of arrangement of fascial planes and superficial vessels of surgical significance.
        Urology. 2013; 82: 910-916
        • Novak TE
        • Lakshmanan Y
        • Frimberger D
        • Epstein JI
        • Gearhart JP
        Polyps in the exstrophic bladder. A cause for concern?.
        J Urol. 2005; 174: 1522-1526