Advertisement

Visualization of the Basement Membrane Zone of the Bladder by Optical Coherence Tomography: Feasibility of Noninvasive Evaluation of Tumor Invasion

      Objectives

      Imaging techniques with high resolution are evolving rapidly for medical applications and may substitute invasive diagnostic techniques. The use of ultrahigh resolution optical coherence tomography (UHR-OCT) to image healthy and morphologically altered bladder tissue with virtual histology is evaluated ex vivo to define parameters necessary for future, diagnostically relevant in vivo systems. Here, special focus is on the visualization of the basement membrane zone.

      Methods

      Optical coherence tomography examinations were performed by using a modified commercial OCT system comprising a Ti:sapphire femtosecond laser to support an enhanced resolution of 3 μm axial × 10 μm lateral. Tomograms of 142 fresh human bladder tissue samples from cystectomies, radical prostatectomies, and transurethral tumor resections were recorded and referenced to histologic sections using standard hematoxylin and eosin staining.

      Results

      OCT of normal bladder mucosa allows for a clear differentiation of urothelium and lamina propria. The basement membrane zone is identified as a narrow, low-scattering band between these layers. This allows for reliable exclusion of invasion. Healthy urothelial tissue, carcinoma in situ, and transitional cell carcinoma can be differentiated using this imaging technique. Sensitivity of UHR-OCT for malignant bladder tissue could be determined to be 83.8%, and specificity to be 78.1%.

      Conclusions

      UHR-OCT is considered promising in the attempt to strive for fluorescence cystoscopy-guided virtual histology as a means of supporting therapeutic decisions for bladder neoplasia.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Urology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fujimoto J.G.
        • Brezinski M.E.
        • Tearney G.J.
        • et al.
        Optical biopsy and imaging using optical coherence tomography.
        Nat Med. 1995; 1: 970-972
        • Drexler W.
        • Morgner U.
        • Ghanta R.K.
        • et al.
        Ultrahigh-resolution ophthalmic optical coherence tomography.
        Nat Med. 2001; 7: 502-507
        • Povazay B.
        • Bizheva K.
        • Unterhuber A.
        • et al.
        Submicrometer axial resolution optical coherence tomography.
        Opt Lett. 2002; 27: 1800-1802
        • Fercher A.F.
        • Drexler W.
        • Hitzenberger C.K.
        • et al.
        Optical coherence tomography—principles and applications.
        Rep Prog Phys. 2003; 66: 239-303
        • Huang D.
        • Swanson E.A.
        • Lin C.P.
        • et al.
        Optical coherence tomography.
        Science. 1991; 254: 1178-1181
        • Jaffe G.J.
        • Caprioli J.
        Optical coherence tomography to detect and manage retinal disease and glaucoma.
        Am J Ophthalmol. 2004; 137: 156-169
        • Tearney G.J.
        • Brezinski M.E.
        • Southern J.F.
        • et al.
        Optical biopsy in human Urologic tissue using optical coherence tomography.
        J Urol. 1997; 157: 1915-1919
        • D'Amico A.V.
        • Weinstein M.
        • Li X.
        • et al.
        Optical coherence tomography as a method for identifying benign and malignant microscopic structures in the prostate gland.
        Urology. 2000; 55: 783-787
        • Jesser C.A.
        • Boppart S.A.
        • Pitris C.
        • et al.
        High resolution imaging of transitional cell carcinoma with optical coherence tomography: feasibility for the evaluation of bladder pathology.
        Br J Radiol. 1999; 72: 1170-1176
        • Zagaynova E.V.
        • Streltsova O.S.
        • Gladkova N.D.
        • et al.
        In vivo optical coherence tomography feasibility for bladder disease.
        J Urol. 2002; 167: 1492-1496
        • Manyak M.J.
        • Gladkova N.D.
        • Makari J.H.
        • et al.
        Evaluation of superficial bladder transitional-cell carcinoma by optical coherence tomography.
        J Endourol. 2005; 19: 570-574
        • Daniltchenko D.
        • König F.
        • Lankenau E.
        • et al.
        Utilizing optical coherence tomography (OCT) for visualization of urothelial diseases of the urinary bladder.
        Radiologe. 2006; 46: 584-589
        • Pan Y.
        • Lavelle J.P.
        • Bastacky S.I.
        • et al.
        Detection of tumorigenesis in rat bladders with optical coherence tomography.
        Med Phys. 2001; 28: 2432-2440
        • Xie T.Q.
        • Zeidel M.L.
        • Pan Y.T.
        Detection of tumorigenesis in urinary bladder with optical coherence tomography: optical characterization of morphological changes.
        Opt Express. 2002; 10: 1431-1443
        • Xie T.
        • Xie H.
        • Fedder G.K.
        • et al.
        Endoscopic optical coherence tomography with a modified microelectromechanical systems mirror for detection of bladder cancers.
        Appl Opt. 2003; 42: 6422-6426
        • Wang Z.G.
        • Durand D.B.
        • Schoenberg M.
        • et al.
        Fluorescence guided optical coherence tomography for the diagnosis of early bladder cancer in a rat model.
        J Urol. 2005; 174: 2376-2381
        • Wang Z.G.
        • Lee C.S.D.
        • Waltzer W.C.
        • et al.
        In vivo bladder imaging with microelectromechanical systems-based endoscopic spectral domain optical coherence tomography.
        J Biomed Opt. 2007; 12: 034009
        • Pan Y.T.
        • Xie H.K.
        • Fedder G.K.
        Endoscopic optical coherence tomography based on a microelectromechanical mirror.
        Opt Lett. 2001; 26: 1966-1968
        • Jakse G.
        • Putz A.
        • Feichtinger J.
        Cystectomy: the treatment of choice in patients with carcinoma in situ of the urinary bladder?.
        Eur J Surg. Oncol. 1989; 15: 211-216
        • Tearney G.J.
        • Brezinski M.E.
        • Bouma B.E.
        • et al.
        In vivo endoscopic optical biopsy with optical coherence tomography.
        Science. 2007; 276: 2037-2039
        • Sergeev A.M.
        • Gelikonov V.M.
        • Gelikonov G.V.
        • et al.
        In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa.
        Opt Express. 1997; 1: 432-440
        • Zaak D.
        • Kriegmair M.
        • Stepp H.
        • et al.
        Endoscopic detection of transitional cell carcinoma with 5-aminolevulinic acid: results of 1012 fluorescence endoscopies.
        Urology. 2001; 57: 690-694
        • Kamuhabwa A.A.R.
        • Roskams T.
        • D'Hallewin M.A.
        • et al.
        Whole bladder wall photodynamic therapy of transitional cell carcinoma rat bladder tumors using intravesically administered hypericin.
        Int J Cancer. 2003; 107: 460-467
        • Pan Y.T.
        • Xie T.Q.
        • Du C.W.
        • et al.
        Enhancing early bladder cancer detection with fluorescence-guided endoscopic optical coherence tomography.
        Opt Lett. 2003; 28: 2485-2487
        • Spöler F.
        • Först M.
        • Marquardt Y.
        • et al.
        High-resolution optical coherence tomography as a non-destructive monitoring tool for the engineering of skin equivalents.
        Skin Res Technol. 2006; 12: 261-267
        • Bizheva K.
        • Unterhuber A.
        • Hermann B.
        • et al.
        Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography.
        J Biomed Opt. 2005; 10: 011006
        • Unterhuber A.
        • Povazay B.
        • Hermann B.
        • et al.
        Compact, low-cost Ti: Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography.
        Opt Lett. 2003; 28: 905-907
        • Bouma B.
        • Tearney G.J.
        • Boppart S.A.
        • et al.
        High-resolution optical coherence tomographic imaging using a mode-locked Ti: Al2O3 laser source.
        Opt Lett. 1995; 20: 1486-1488
        • Boppart S.A.
        • Bouma B.E.
        • Pitris C.
        • et al.
        In vivo cellular optical coherence tomography imaging.
        Nat Med. 1998; 4: 861-865
        • Spöler F.
        • Kray S.
        • Grychtol P.
        • et al.
        Simultaneous dual-band ultra-high resolution optical coherence tomography.
        Opt Express. 2007; 15: 10832-10841